

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 7

Water Enhancer Indica Strawberry Lemonade

Sample ID: SA-240411-38 Batch: 042024INDWS Type: In-Process Material Matrix: Oil / Liquid - Beve Jnit Mass (g):		Received: 03/14 Completed: 04		SunFlora Inc 600 8th Ave	Client SunFlora Inc. 600 8th Ave W, STE 400 Palmetto, FL 34221 USA		
			Summa	ry			
			Test	Date Tested	Status		
			Cannabinoid		Tested		
			Heavy Metals		Tested		
~			Microbials	04/16/2024	Tested		
			Mycotoxins	04/16/2024	Tested		
			Pesticides	04/16/2024	Tested		
	AN AN		Residual Solv		Tested		
	BRANDS		Terpenes	04/16/2024	Tested		
2.95 mg/mL	17.3 mg/mL	29.0 mg/mL	Not Tested	Not Tested	Yes		
Total ∆9-THC	Total CBD	Total Cannabinoids	Moisture Conte	nt Foreign Matter	Internal Standard Normalization		
Cannabinoids I	by HPLC-PDA		LOQ mg/mL)	Result	Normalization		
Cannabinoids I Analyte	by HPLC-PDA	iL)	roð		Normalization		
Cannabinoids I Analyte IBC	by HPLC-PDA LOD (mg/m	н ц) (LOQ mg/mL)	Result (mg/mL)	Normalization Result (%)		
Cannabinoids I malyte BC BCA	by HPLC-PDA LOD (mg/m 0.0009	L) (LOQ mg/mL) 0.00284	Result (mg/mL) 4.67498	Normalization Result (%) 0.453		
Cannabinoids I Analyte BBC BBCA BBCV	oy HPLC-PDA LOD (mg/m 0.0009 0.0018	L) 15 л 6	LOQ mg/mL) 0.00284 0.00543	Result (mg/mL) 4.67498 ND	Normalization Result (%) 0.453 ND		
Cannabinoids I malyte BC BCA BCV BD	oy HPLC-PDA LOD (mg/m 0.0009 0.0018 0.0008	L) 15 17 6 81	LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013	Result (mg/mL) 4.67498 ND ND ND	Normalization Result (%) 0.453 ND ND ND		
Cannabinoids I malyte BC BCA BCV BD BDA	oy HPLC-PDA LOD (mg/m 0.0009 0.0018 0.0006 0.0006	L) 15 17 5 81 13	LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182	Result (mg/mL) 4.67498 ND ND ND 17.31888	Normalization Result (%) 0.453 ND ND 1.68		
Cannabinoids I malyte BC BCA BCV BD BDA BDV BDV BDVA	Dy HPLC-PDA LOD (mg/m 0.0009 0.0018 0.0000 0.0008 0.0004 0.0006 0.0002	L) 15 17 6 81 13 13 15 12	LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063	Result (mg/mL) 4.67498 ND ND 17.31888 ND 0.27556 ND	Normalization Result (%) 0.453 ND ND 1.68 ND 0.0267 ND		
Cannabinoids I malyte BC BCA BCV BD BDA BDV BDVA BC	Dy HPLC-PDA LOD (mg/m 0.0009 0.0018 0.0000 0.0004 0.0004 0.0004 0.0002 0.0002 0.0002	L) 15 17 16 13 13 13 13 13 13 13 17	LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172	Result (mg/mL) 4.67498 ND ND 17.31888 ND 0.27556 ND 2.62243	Normalization Result (%) 0.453 ND ND 1.68 ND 0.0267 ND 0.254		
Cannabinoids I malyte BC BCA BCV BD BDA BDA BDV BDVA BC BCA	Dy HPLC-PDA LOD (mg/m 0.0009 0.0018 0.0000 0.0004 0.0004 0.0002 0.0005 0.0004	L) 15 17 13 13 13 13 13 17 19	LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147	Result (mg/mL) 4.67498 ND ND 17.31888 ND 0.27556 ND 2.62243 ND	Normalization Result (%) 0.453 ND ND 1.68 ND 0.0267 ND 0.254 ND		
Cannabinoids I malyte BC BCA BCV BD BDA BDA BDV BDVA BC BCA BCA BCA BCA BCA BCA BCA	Dy HPLC-PDA LOD (mg/m 0.0009 0.0018 0.0000 0.0004 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002	L) 15 17 18 13 13 13 13 13 13 13 14 17 19 2	LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00172 0.00147 0.00335	Result (mg/mL) 4.67498 ND ND 17.31888 ND 0.27556 ND 2.62243 ND 0.262243 ND 0.19195	Normalization Result (%) 0.453 ND ND 1.68 ND 0.0267 ND 0.254 ND 0.254 ND 0.0186		
Cannabinoids I malyte BC BCA BCV BD BDA BDA BDV BDVA BC BCA BCA BCA BCA BCA BCA BCA BCA BCA	Dy HPLC-PDA LOD (mg/m 0.0009 0.0018 0.0004 0.0004 0.0005 0.0004 0.0005 0.0004 0.0005 0.0004 0.0005 0.0004 0.0012	L) 15 17 18 13 13 13 13 13 13 13 14 17 19 19 2 4	LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00172 0.00147 0.00335 0.00371	Result (mg/mL) 4.67498 ND ND 17.31888 ND 0.27556 ND 2.62243 ND 0.19195 ND	Normalization Result (%) 0.453 ND ND 1.68 ND 0.0267 ND 0.254 ND 0.254 ND 0.0186 ND		
Cannabinoids I malyte BC BCA BCV BD BDA BDA BDV BDVA BDV BDVA BC BCA BCA BCA BCA BCA BCA BCA BCA BCA	Dy HPLC-PDA LOD (mg/m 0.0009 0.0018 0.0000 0.0004 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0012 0.0012 0.0012	L) 15 17 16 13 13 13 13 14 17 19 19 24 46 16	LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00172 0.00147 0.00335 0.00371 0.00169	Result (mg/mL) 4.67498 ND ND 17.31888 ND 0.27556 ND 2.62243 ND 0.19195 ND 0.19195 ND ND	Normalization Result (%) 0.453 ND ND 1.68 ND 0.0267 ND 0.254 ND 0.254 ND 0.0186 ND ND ND ND 0.0186 ND ND ND		
Cannabinoids I malyte BC BCA BCV BD BDA BDA BDA BDV BDVA BC BCA BCA BCA BCA BCA BCA BCA BCA BCA	Dy HPLC-PDA LOD (mg/m 0.0009 0.0018 0.0004 0.0004 0.0005 0.0004 0.0005 0.0004 0.0012 0.0005 0.0004 0.0012 0.0005 0.0005	L) 15 17 16 13 13 15 12 17 19 2 2 4 16 5 5	LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181	Result (mg/mL) 4.67498 ND ND 17.31888 ND 0.27556 ND 2.62243 ND 0.19195 ND 0.19195 ND ND ND ND	Normalization Result (%) 0.453 ND ND 1.68 ND 0.0267 ND 0.0254 ND 0.0186 ND 0.0186 ND ND ND ND ND ND		
Cannabinoids I malyte BC BCA BCV BD BDA BDA BDA BDV BDVA BC BCA BCA BL BLA BL BLA BN BNA BT	Dy HPLC-PDA LOD (mg/m 0.0009 0.0018 0.0000 0.0004 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0012 0.0012 0.0012	L) 15 17 16 13 13 13 13 13 14 15 17 19 2 2 4 16 6 6 8 1 1 1 1 1 1 1 1 1 1 1 1 1	LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181 0.0054	Result (mg/mL) 4.67498 ND ND 17.31888 ND 0.27556 ND 2.62243 ND 0.29195 ND 0.19195 ND ND ND ND ND ND ND ND ND	Normalization Result (%) 0.453 ND ND 1.68 ND 0.0267 ND 0.0267 ND 0.254 ND 0.254 ND 0.0186 ND ND 0.0186 ND ND 0.0186 ND ND 0.0186 ND ND 0.0186 ND ND 0.0254		
Cannabinoids I analyte BC BCA BCA BCA BDA BDA BDA BDA BDA BDA BDA BDA BDA BD	Dy HPLC-PDA LOD (mg/m 0.0009 0.0018 0.0000 0.0004 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0012 0.0012 0.0012	L) 15 17 18 13 13 13 13 13 13 14 14 16 16 16 17 19 22 4 16 16 18 18 18 18 18 18 18 18 18 18	LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00371 0.00147 0.0035 0.00171 0.00181 0.0054 0.00312	Result (mg/mL) 4.67498 ND ND 17.31888 ND 0.27556 ND 2.62243 ND 0.19195 ND 0.19195 ND ND ND ND ND ND ND ND ND ND ND ND	Normalization Result (%) 0.453 ND ND 1.68 ND 0.0267 ND 0.254 ND 0.254 ND 0.0186 ND 0.0186 ND 0.0186 ND 0.0186 ND ND 0.0186 ND ND ND ND ND ND ND 0.254 ND ND 0.0254 ND ND 0.0254 ND 0.02554 ND 0.02554 ND 0.02554 ND 0.02554 ND 0.02554 ND 0.02554 ND 0.02554 ND 0.02554 ND		
Cannabinoids I Analyte BC BC BC BC BC BC BC BC BC BC BC BC BC	Dy HPLC-PDA LOD (mg/m 0.0009 0.0018 0.0000 0.0004 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0012 0.0012 0.0012 0.0012 0.0012	L) 15 17 16 13 13 13 13 13 13 14 16 16 16 16 17 19 22 4 16 16 16 18 18 18 18 18 18 18 18 18 18	LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00371 0.00147 0.0035 0.00311 0.0054 0.00312 0.00227	Result (mg/mL) 4.67498 ND ND 17.31888 ND 0.27556 ND 0.27556 ND 2.62243 ND 0.19195 ND 0.19195 ND ND ND ND ND ND ND ND ND ND ND ND ND	Normalization Result (%) 0.453 ND ND 1.68 ND 0.0267 ND 0.0254 ND 0.0186 ND 0.0186 ND ND 0.0186 ND ND 0.0186 ND ND 0.0954 ND 0.0954 ND 0.285		
Cannabinoids I Analyte BC BC BCA BCV BDA BDA BDA BDA BDA BDA BDA BDA BDA BDA	Dy HPLC-PDA LOD (mg/m 0.0009 0.0018 0.0000 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010	L) 15 17 16 13 13 13 13 13 14 14 16 16 16 16 16 16 16 16 16 16	LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181 0.0054 0.00312 0.00227 0.00251	Result (mg/mL) 4.67498 ND ND 17.31888 ND 0.27556 ND 2.62243 ND 0.19195 ND 0.19195 ND ND ND ND ND ND 0.98512 ND 2.9479 ND	Normalization Result (%) 0.453 ND ND 1.68 ND 0.0267 ND 0.0254 ND 0.0186 ND 0.0186 ND ND 0.0186 ND ND 0.0186 ND ND 0.0954 ND 0.0954 ND 0.285 ND		
Cannabinoids I Analyte BC BC BC BC BC BC BC BC BC BC BC BC BC	Dy HPLC-PDA LOD (mg/m 0.0009 0.0018 0.0000 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0010 0.0012 0	L) 15 17 16 13 13 13 13 13 14 15 16 16 16 16 16 16 16 16 16 16	LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181 0.0054 0.00312 0.00227 0.00251 0.00206	Result (mg/mL) 4.67498 ND ND 17.31888 ND 0.27556 ND 2.62243 ND 0.19195 ND 0.19195 ND ND ND ND 0.98512 ND ND 0.98512 ND ND ND 0.98512 ND ND ND 0.98512 ND ND ND ND ND ND ND ND ND ND ND ND ND	Normalization		
Total Δ9-THC	Dy HPLC-PDA LOD (mg/m 0.0009 0.0018 0.0000 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010	L) 15 17 16 13 13 13 13 13 14 15 16 16 16 16 16 16 16 16 16 16	LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181 0.0054 0.00312 0.00227 0.00251	Result (mg/mL) 4.67498 ND ND 17.31888 ND 0.27556 ND 2.62243 ND 0.19195 ND 0.19195 ND ND ND ND ND ND 0.98512 ND 2.9479 ND	Normalization Result (%) 0.453 ND ND 1.68 ND 0.0267 ND 0.0254 ND 0.0186 ND 0.0186 ND ND 0.0186 ND ND 0.0186 ND ND 0.0954 ND 0.0954 ND 0.285 ND		

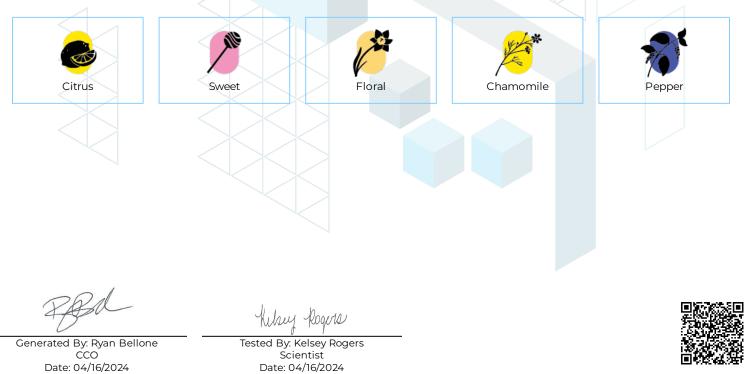
ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;


Generated By: Ryan Bellone CCO Date: 04/16/2024

Tested By: Nicholas Howard

estéd By: Nicholas Howarc Scientist Date: 04/01/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

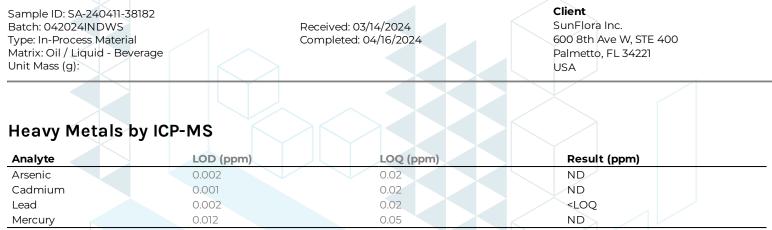


2 of 7

Water Enhancer Indica Strawberry Lemonade

Client Sample ID: SA-240411-38182 SunFlora Inc. Batch: 042024INDWS Received: 03/14/2024 Type: In-Process Material 600 8th Ave W, STE 400 Completed: 04/16/2024 Matrix: Oil / Liquid - Beverage Palmetto, FL 34221 Unit Mass (g): USA **Terpenes by GC-MS** LOD LOD LOQ Result LOQ Result Analyte Analyte (%) (%) (%) (%) (%) (%) α-Bisabolol 0.0002 0.0545 Limonene 0.001 0.114 0.001 0.0002 (+)-Borneol 0.0002 0.001 <LOQ Linalool 0.0002 0.001 0.0111 0.00289 Camphene 0.0002 0.001 ND β-myrcene 0.0002 0.001 Camphor 0.0004 0.002 ND Nerol 0.0002 0.001 ND cis-Nerolidol 3-Carene 0.0002 0.001 ND 0.0002 0.001 ND **β**-Caryophyllene 0.0002 0.001 0.0251 trans-Nerolidol 0.0002 0.001 0.0043 Caryophyllene Oxide 0.0002 0.001 0.00825 0.0002 0.001 ND Ocimene α -Cedrene 0.0002 0.001 <LOQ α-Phellandrene 0.0002 0.001 ND 0.00249 Cedrol 0.0002 0.001 ND α-Pinene 0.0002 0.001 <LOQ 0.00174 Eucalyptol 0.0002 0.001 β-Pinene 0.0002 0 0 0 1 Fenchone 0.0004 0.002 ND Pulegone 0.0002 0.001 ND Fenchyl Alcohol 0.0002 0.001 0.00367 Sabinene 0.0002 0.001 ND Geraniol 0.0002 0.001 ND Sabinene Hydrate 0.0002 0.001 ND Geranyl Acetate 0.0002 0.001 ND α-Terpinene 0.0002 0.001 ND 0.001 0.00166 Guaiol 0.0002 0.0107 γ-Terpinene 0.0002 0.001 Hexahydrothymol 0.0002 0.001 ND **α**-Terpineol 0.0001 0.0005 0.00477 α-Humulene 0.0002 0.001 0.01 γ-Terpineol 0.0001 0.0005 <LOQ 0.0002 0.001 Terpinolene 0.001 <LOQ Isoborneol ND 0.0002 Isopulegol 0.0002 0.001 ND Valencene 0.0002 0.001 ND **Total Terpenes (%)** 0.258

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates


This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests proformed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

3 of 7

Water Enhancer Indica Strawberry Lemonade

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/16/2024

Tested By: Chris Farman

ested By: Chris Farmar Scientist Date: 04/16/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other riska associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

4 of 7

Water Enhancer Indica Strawberry Lemonade

Sample ID: SA-240411-38182 Batch: 042024INDWS Type: In-Process Material Matrix: Oil / Liquid - Beverage Unit Mass (g):

Received: 03/14/2024 Completed: 04/16/2024 **Client** SunFlora Inc. 600 8th Ave W, STE 400

Palmetto, FL 34221 USA

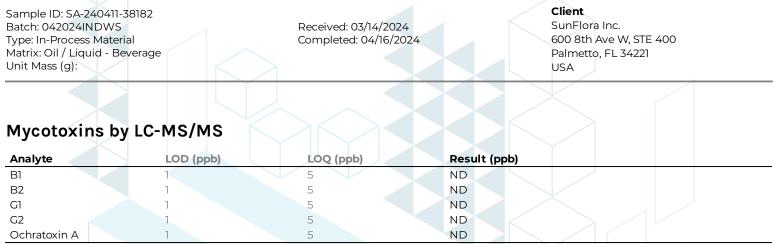
Pesticides by LC-MS/MS

Analyte	LOD	LOQ (ppb)	Result	Analyte	LOD	LOQ (ppb)	Result
Abamectin	(ppb) 30	(ppb)	(ppb) ND	Hexythiazox	(ppb) 30	(ppb) 100	(ppb) ND
Acephate	30	100	ND	Imazalil	30	100	ND
Acequinocyl	30	100	ND	Imidacloprid	30	100	ND
Acetamiprid	30	100	ND	Kresoxim methyl	30	100	ND
Aldicarb	30	100	ND	Malathion	30	100	ND
Azoxystrobin	30	100	ND	Metalaxyl	30	100	ND
Bifenazate	30	100	ND	Methiocarb	30	100	ND
Bifenthrin	30	100	ND	Methomyl	30	100	ND
Boscalid	30	100	ND	Mevinphos	30	100	ND
Carbaryl	30	100	ND	Myclobutanil	30	100	ND
Carbofuran	30	100	ND	Naled	30	100	ND
Chloranthraniliprole	30	100	ND	Oxamyl	30	100	ND
Chlorfenapyr	30	100	ND	Paclobutrazol	30	100	ND
Chlorpyrifos	30	100	ND	Permethrin	30	100	ND
Clofentezine	30	100	ND	Phosmet	30	100	ND
Coumaphos	30	100	ND	Piperonyl Butoxide	30	100	ND
Cypermethrin	30	100	ND	Prallethrin	30	100	ND
Daminozide	30	100	ND	Propiconazole	30	100	ND
Diazinon	30	100	ND	Propoxur	30	100	ND
Dichlorvos	30	100	ND	Pyrethrins	30	100	ND
Dimethoate	30	100	ND	Pyridaben	30	100	ND
Dimethomorph	30	100	ND	Spinetoram	30	100	ND
Ethoprophos	30	100	ND	Spinosad	30	100	ND
Etofenprox	30	100	ND	Spiromesifen	30	100	ND
Etoxazole	30	100	ND	Spirotetramat	30	100	ND
Fenhexamid	30	100	ND	Spiroxamine	30	100	ND
Fenoxycarb	30	100	ND	Tebuconazole	30	100	ND
Fenpyroximate	30	100	ND	Thiacloprid	30	100	ND
Fipronil	30	100	ND	Thiamethoxam	30	100	ND
Flonicamid	30	100	ND	Trifloxystrobin	30	100	ND
Fludioxonil	30	100	ND				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/16/2024

Tested By: Anthony Mattingly Scientist


Date: 04/16/2024 Date: 04/16/2024 Date: 04/16/2024 Date: 04/16/2024 Date: 04/16/2024 This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

5 of 7

Water Enhancer Indica Strawberry Lemonade

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/16/2024

Tested By: Anthony Mattingly Scientist

Date: 04/16/2024 Date: 04/16/2024 This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

6 of 7

Water Enhancer Indica Strawberry Lemonade

Sample ID: SA-240411-38182 Batch: 042024INDWS Type: In-Process Material Matrix: Oil / Liquid - Beverage Unit Mass (g):		d: 03/14/2024 ted: 04/16/2024	Client SunFlora Inc. 600 8th Ave W, STE 400 Palmetto, FL 34221 USA
		\sim	
Microbials by PCR and Pla Analyte	ating LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)
		Result (CFU/g) ND	Result (Qualitative)
Analyte Total aerobic count			Result (Qualitative)
Analyte Total aerobic count Total coliforms	LOD (CFU/g)	ND	Result (Qualitative)
Analyte	LOD (CFU/g) 10 10	ND ND	Result (Qualitative)

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 04/16/2024

Tested By: Mario Aguirre

Tested By: Mario Aguirr Lab Technician Date: 04/16/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

7 of 7

Water Enhancer Indica Strawberry Lemonade

Sample ID: SA-240411-38182 Batch: 042024INDWS Type: In-Process Material Matrix: Oil / Liquid - Beverage Unit Mass (g):

Received: 03/14/2024 Completed: 04/16/2024 Client SunFlora Inc. 600 8th Ave W, STE 400 Palmetto, FL 34221 USA

Residual Solvents by HS-GC-MS

	5						
Analyte	LOD	LOQ	Result	Analyte	LOD	LOQ	Result
Analyte	(ppm)	(ppm)	(ppm)	Analyte	(ppm)	(ppm)	(ppm)
Acetone	167	500	ND	Ethylene Oxide	0.5	1	ND
Acetonitrile	14	41	ND	Heptane	167	500	991
Benzene	0.5	1	ND	n-Hexane	10	29	ND
Butane	167	500	ND	Isobutane	167	500	ND
1-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanol	167	500	ND	Isopropyl Alcohol	167	500	ND
2-Butanone	167	500	ND	Isopropylbenzene	167	500	ND
Chloroform	2	6	ND	Methanol	100	300	ND
Cyclohexane	129	388	ND	2-Methylbutane	10	29	ND
1,2-Dichloroethane	0.5	1	ND	Methylene Chloride	20	60	ND
1,2-Dimethoxyethane	4	10	ND	2-Methylpentane		29	ND
Dimethyl Sulfoxide	167	500	ND	3-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	n-Pentane	167	500	ND
2,2-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
2,3-Dimethylbutane	10	29	ND	n-Propane	167	500	ND
N,N-Dimethylformamide	30	88	ND	1-Propanol	167	500	ND
2,2-Dimethylpropane	167	500	ND	Pyridine	7	20	ND
1,4-Dioxane	13	38	ND	Tetrahydrofuran	24	72	ND
Ethanol	167	500	>70000	Toluene	30	89	ND
2-Ethoxyethanol	6	16	ND	Trichloroethylene	3	8	ND
Ethyl Acetate	167	500	ND	Xylenes (o-, m-, and p-)	73	217	ND
Ethyl Ether	167	500	ND				
Ethylbenzene	3	7	ND				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/16/2024

Tested By: Kelsey Rogers Scientist

Date: 04/16/2024 Date: 04/12/2024
This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.