+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 7

Water Enhancer Sativa Orange

ample ID: SA-240411-381 atch: 042024SATWS /pe: In-Process Material latrix: Oil / Liquid - Bever nit Mass (g):		Received: 03/14/2024 Completed: 04/16/2024			Client SunFlora Inc. 600 8th Ave W, STE 400 Palmetto, FL 34221 USA		
			Summ	nary			
			Test		Date Tested	Status	
			Cannabin	oids	03/18/2024	Tested	
			Heavy Me	etals	04/16/2024	Tested	
-			Microbials		04/16/2024	Tested	
			Mycotoxir		04/16/2024	Tested	
	0		Pesticides		04/16/2024	Tested	
	AL		Residual S		04/12/2024	Tested	
	BRANDS Water Enhancer		Terpenes		04/16/2024	Tested	
2.98 mg/mL	16.8 mg/mL	37.4 mg/mL	Not Teste	ed b	Not Tested	Yes	
Total ∆9-THC	Total CBD	Total Cannabinoids	Moisture Cor	ntent	Foreign Matter	Internal Standard Normalization	
тоtal Δ9-ТНС Cannabinoids b		Total Cannabinoids	Moisture Cor	ntent	Foreign Matter		
cannabinoids b _{nalyte}			LOQ [mg/mL]		Foreign Matter Result (mg/mL)		
cannabinoids b nalyte BC	y HPLC-PDA LOD (mg/ml 0.00095	L) 5	LOQ [mg/mL] 0.00284		Result (mg/mL) 4.61474	Result (%) 0.438	
cannabinoids b nalyte BC BCA	y HPLC-PDA LOD (mg/ml 0.00095 0.00181	L)	LOQ (mg/mL) 0.00284 0.00543		Result (mg/mL) 4.61474 ND	Normalization Result (%) 0.438 ND	
cannabinoids b nalyte BC BCA BCV	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006	L)	LOQ (mg/mL) 0.00284 0.00543 0.0018		Result (mg/mL) 4.61474 ND ND	Normalization Result (%) 0.438 ND ND ND	
Cannabinoids b nalyte BC BCA BCV BD	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006 0.0008	L)	LOQ (mg/mL) 0.00284 0.00543 0.0018 0.00242		Result (mg/mL) 4.61474 ND ND 16.77456	Normalization Result (%) 0.438 ND ND 1.59	
cannabinoids b nalyte BC BCA BCA BCV BD BDA	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006 0.00081 0.00063 0.00043	L) (LOQ (mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013		Result (mg/mL) 4.61474 ND ND 16,77456 ND	Normalization Result (%) 0.438 ND ND 1.59 ND	
annabinoids b nalyte BC BCA BCV BD BDA BDA BDV	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006 0.00081 0.00063 0.00043 0.00043	L) (LOQ (mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182		Result (mg/mL) 4.61474 ND ND 16.77456 ND 0.30608	Normalization Result (%) 0.438 ND ND 1.59 ND 0.0291	
annabinoids b nalyte BC BCA BCA BCV BD BDA BDA BDV BDVA	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006 0.00081 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061	L) (LOQ (mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063		Result (mg/mL) 4.61474 ND ND 16.77456 ND 0.30608 ND	Normalization Result (%) 0.438 ND ND 1.59 ND 0.0291 ND	
annabinoids b nalyte BC BCA BCV BD BDA BDV BDVA BG	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006 0.00081 0.00061 0.00061 0.00021 0.00021 0.00021	L) 5 1 3 1 1 7	LOQ (mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172		Result (mg/mL) 4.61474 ND ND 16.77456 ND 0.30608 ND 11.47477	Normalization Result (%) 0.438 ND ND 1.59 ND 0.0291 ND 1.09	
annabinoids b nalyte BC BCA BCV BD BDA BDA BDV BDVA BGA	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006 0.00081 0.00043 0.00043 0.00021 0.00021 0.00025 0.00024	L) 5 1 3 1 1 7 9	LOQ (mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147		Result (mg/mL) 4.61474 ND ND 16.77456 ND 0.30608 ND 11.47477 ND	Normalization Result (%) 0.438 ND ND 1.59 ND 0.0291 ND 1.09 ND 1.09 ND	
annabinoids b nalyte BC BCA BCV BD BDA BDA BDV BDVA BGA BGA BL	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006 0.00081 0.00043 0.00043 0.00045 0.00045 0.00045 0.00045 0.00045	L) 5 1 3 1 1 7 9	LOQ (mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00172 0.00147 0.00335		Result (mg/mL) 4.61474 ND ND 16.77456 ND 0.30608 ND 11.47477 ND 0.21873	Normalization Result (%) 0.438 ND ND 1.59 ND 0.0291 ND 1.09 ND 1.09 ND 0.0208	
Cannabinoids b nalyte BC BCA BCV BD BDA BDA BDV BDVA BGA BGA BL BLA	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006 0.00081 0.00043 0.00043 0.00045 0.00021 0.00045 0.00045 0.00045 0.00112 0.00124	L) 5 1 3 1 1 7 9	LOQ (mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00172 0.00147 0.00335 0.00371		Result (mg/mL) 4.61474 ND ND 16,77456 ND 0.30608 ND 11.47477 ND 0.21873 ND	Normalization Result (%) 0.438 ND ND 1.59 ND 0.0291 ND 1.09 ND 0.0208 ND	
Cannabinoids b nalyte BC BCA BCV BD BDA BDA BDV BDVA BGA BGA BLA BLA BN	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006 0.00081 0.0006 0.00021 0.00021 0.00025 0.00112 0.00124 0.00124 0.00124 0.00124 0.00124 0.00056	L)	LOQ (mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00172 0.00147 0.00335 0.00371 0.00169		Result (mg/mL) 4.61474 ND ND 16.77456 ND 0.30608 ND 11.47477 ND 0.21873 ND 0.21873 ND 0.05451	Normalization Result (%) 0.438 ND ND 1.59 ND 0.0291 ND 1.09 ND 1.09 ND 0.0208 ND 0.0208 ND 0.00517	
annabinoids b nalyte BC BCA BCV BD BDA BDA BDV BDVA BGA BGA BL BLA BLA BN BNA	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006 0.0006 0.00043 0.00043 0.00045 0.00021 0.00057 0.00049 0.0012 0.0012 0.0012 0.0012 0.00056 0.00057 0.00056 0.00057 0.00055 0.00057 0.00055 0.		LOQ (mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00172 0.00147 0.00335 0.00371 0.0035 0.00371 0.00169 0.00181		Result (mg/mL) 4.61474 ND ND 16.77456 ND 0.30608 ND 11.47477 ND 0.21873 ND 0.05451 ND	Normalization Result (%) 0.438 ND ND 1.59 ND 0.0291 ND 1.09 ND 0.0208 ND 0.0208 ND 0.00517 ND	
Cannabinoids b nalyte BC BCA BCV BD BDA BDV BDVA BGA BGA BLA BLA BLA BNA BNA BT	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006 0.00081 0.00043 0.00045 0.00021 0.00021 0.00057 0.00045 0.00112 0.0012 0.0112 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0002 0.0012 0.0002 0.0012 0.00000000	L)	LOQ (mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181 0.0054		Result (mg/mL) 4.61474 ND ND 16.77456 ND 0.30608 ND 11.47477 ND 0.21873 ND 0.05451 ND 0.05451 ND 0.9996	Normalization Result (%) 0.438 ND ND 1.59 ND 0.0291 ND 1.09 ND 0.0208 ND 0.0208 ND 0.0208 ND 0.00517 ND 0.0949	
Cannabinoids b nalyte BC BCA BCV BD BDA BDV BDVA BGA BGA BLA BLA BLA BN BNA BT 8-THC	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006 0.00081 0.00043 0.00045 0.00021 0.00045 0.00045 0.00124 0.00144 0.0014 0.0014	L) 5 1 3 1 1 7 9 9	LOQ (mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181 0.0054 0.00312		Result (mg/mL) 4.61474 ND ND 16.77456 ND 0.30608 ND 11.47477 ND 0.21873 ND 0.05451 ND 0.05451 ND 0.9996 ND	Normalization Result (%) 0.438 ND ND 1.59 ND 0.0291 ND 1.09 ND 0.0208 ND 0.0208 ND 0.00517 ND 0.0949 ND	
Cannabinoids b nalyte BC BCA BCV BD BDA BDA BDV BDVA BGA BGA BLA BLA BLA BN BNA BT 8-THC 9-THC	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006 0.00081 0.00042 0.00021 0.00021 0.00021 0.00025 0.00022 0.0002 0.0002 0.0002 0.00022 0.0002 0.0002 0.		LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181 0.0054 0.00312 0.00227		Result (mg/mL) 4.61474 ND ND 16.77456 ND 0.30608 ND 11.47477 ND 0.21873 ND 0.05451 ND 0.05451 ND 0.9996 ND 2.97838	Normalization Result (%) 0.438 ND ND 1.59 ND 0.0291 ND 1.09 ND 0.0208 ND 0.0208 ND 0.00517 ND 0.00517 ND 0.0949 ND 0.283	
Cannabinoids b nalyte BC BCA BCV BD BDA BDV BDVA BGA BGA BLA BLA BLA BN BNA BT 8-THC 9-THC 9-THCA	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006 0.00081 0.00042 0.00021 0.00021 0.00021 0.00025 0.00022 0.00022 0.00022 0.00025 0.00022 0.00025 0.00022 0.0002 0.0002 0.00022 0.0002 0.0002 0.0002 0.	L) 5 1 3 1 1 7 9 9 4 5	LOQ (mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181 0.0054 0.00312 0.0054 0.00312 0.00227 0.00251		Result (mg/mL) 4.61474 ND ND 16.77456 ND 0.30608 ND 11.47477 ND 0.21873 ND 0.05451 ND 0.05451 ND 0.9996 ND 2.97838 ND	Normalization Result (%) 0.438 ND ND 1.59 ND 0.0291 ND 0.0291 ND 0.0208 ND 0.0208 ND 0.00517 ND 0.0949 ND 0.0949 ND 0.283 ND	
Cannabinoids b nalyte BC BCA BCV BD BDA BDV BDVA BGA BGA BLA BLA BLA BNA BT 8-THC 9-THC 9-THCA 9-THCY	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006 0.00081 0.00042 0.00021 0.00021 0.00021 0.00022 0.0002 0.0002 0.00022 0.00022 0.0002 0.0002 0		LOQ mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181 0.0054 0.00312 0.0054 0.00312 0.00227 0.00251 0.00206		Result (mg/mL) 4.61474 ND ND 16.77456 ND 0.30608 ND 11.47477 ND 0.21873 ND 0.05451 ND 0.05451 ND 0.9996 ND 2.97838 ND ND	Normalization	
Cannabinoids b nalyte BC BCA BCV BD BDA BDV BDVA BGA BGA BLA BLA BLA BN BNA BT 8-THC 9-THC 9-THCA	y HPLC-PDA LOD (mg/ml 0.00099 0.00181 0.0006 0.00081 0.00042 0.00021 0.00021 0.00021 0.00025 0.00022 0.0002 0.0002 0.0002 0.00022 0.0002 0.0002 0.		LOQ (mg/mL) 0.00284 0.00543 0.0018 0.00242 0.0013 0.00182 0.00063 0.00172 0.00147 0.00335 0.00172 0.00147 0.00335 0.00371 0.00169 0.00181 0.0054 0.00312 0.0054 0.00312 0.00227 0.00251		Result (mg/mL) 4.61474 ND ND 16.77456 ND 0.30608 ND 11.47477 ND 0.21873 ND 0.05451 ND 0.05451 ND 0.9996 ND 2.97838 ND	Normalization Result (%) 0.438 ND ND 1.59 ND 0.0291 ND 0.0291 ND 0.0208 ND 0.0208 ND 0.00517 ND 0.0949 ND 0.0949 ND 0.283 ND	

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ9-THC = Δ9-THCA * 0.877 + Δ9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 04/16/2024

Tested By: Nicholas Howard

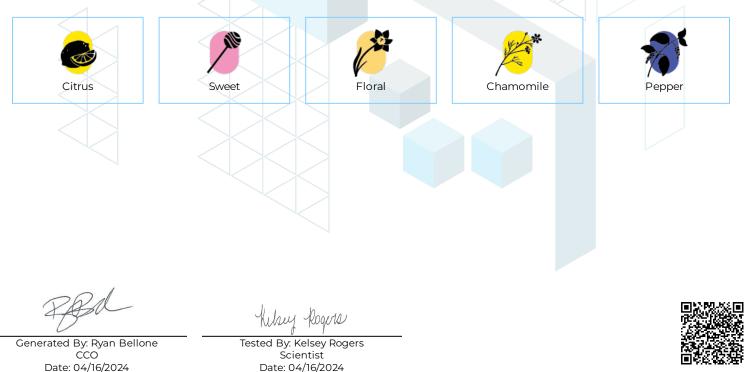
stéd By: Nicholas Howard Scientist Date: 03/18/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

2 of 7

Water Enhancer Sativa Orange


Sample ID: SA-240411-38181 Batch: 042024SATWS Type: In-Process Material Matrix: Oil / Liquid - Beverage Unit Mass (g):

Received: 03/14/2024 Completed: 04/16/2024 Client SunFlora Inc. 600 8th Ave W, STE 400 Palmetto, FL 34221 USA

Terpenes by GC-MS

leipenes by de	1410						
Analyte	LOD (%)	LOQ (%)	Result (%)	Analyte	LOD (%)	LOQ (%)	Result (%)
α -Bisabolol	0.0002	0.001	0.0502	Limonene	0.0002	0.001	0.119
(+)-Borneol	0.0002	0.001	ND	Linalool	0.0002	0.001	0.00444
Camphene	0.0002	0.001	<loq< td=""><td>β-myrcene</td><td>0.0002</td><td>0.001</td><td>0.00564</td></loq<>	β-myrcene	0.0002	0.001	0.00564
Camphor	0.0004	0.002	ND	Nerol	0.0002	0.001	ND
3-Carene	0.0002	0.001	ND	cis-Nerolidol	0.0002	0.001	ND
β -Caryophyllene	0.0002	0.001	0.0315	trans-Nerolidol	0.0002	0.001	0.00389
Caryophyllene Oxide	0.0002	0.001	0.00806	Ocimene	0.0002	0.001	ND
α -Cedrene	0.0002	0.001	<loq< td=""><td>α-Phellandrene</td><td>0.0002</td><td>0.001</td><td>ND</td></loq<>	α -Phellandrene	0.0002	0.001	ND
Cedrol	0.0002	0.001	ND	α -Pinene	0.0002	0.001	0.0162
Eucalyptol	0.0002	0.001	ND	β-Pinene	0.0002	0.001	<loq< td=""></loq<>
Fenchone	0.0004	0.002	ND	Pulegone	0.0002	0.001	ND
Fenchyl Alcohol	0.0002	0.001	<loq< td=""><td>Sabinene</td><td>0.0002</td><td>0.001</td><td>ND</td></loq<>	Sabinene	0.0002	0.001	ND
Geraniol	0.0002	0.001	ND	Sabinene Hydrate	0.0002	0.001	ND
Geranyl Acetate	0.0002	0.001	0.00294	α -Terpinene	0.0002	0.001	ND
Guaiol	0.0002	0.001	0.01	γ-Terpinene	0.0002	0.001	<loq< td=""></loq<>
Hexahydrothymol	0.0002	0.001	ND	α -Terpineol	0.0001	0.0005	0.00292
α -Humulene	0.0002	0.001	0.0148	γ-Terpineol	0.0001	0.0005	ND
Isoborneol	0.0002	0.001	ND	Terpinolene	0.0002	0.001	<loq< td=""></loq<>
Isopulegol	0.0002	0.001	ND	Valencene	0.0002	0.001	ND
				Total Terpenes (%)			0.272

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

3 of 7

Water Enhancer Sativa Orange

kca

Sample ID: SA-240411-38181 Batch: 042024SATWS Type: In-Process Material Matrix: Oil / Liquid - Beverage Unit Mass (g):		eceived: 03/14/2024 ompleted: 04/16/2024	Client SunFlora Inc. 600 8th Ave W, STE 400 Palmetto, FL 34221 USA		
Heavy Metals by IC	P-MS				
Analyte	IOD (ppm)		Result (ppm)		
Analyte Arsenic	LOD (ppm)	LOQ (ppm)	Result (ppm)		
Arsenic	0.002	0.02	ND		
Analyte Arsenic Cadmium Lead					

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/16/2024

Tested By: Chris Farman

ested By: Chris Farmar Scientist Date: 04/16/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories and provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

4 of 7

Water Enhancer Sativa Orange

Sample ID: SA-240411-38181 Batch: 042024SATWS Type: In-Process Material Matrix: Oil / Liquid - Beverage Unit Mass (g):

Received: 03/14/2024 Completed: 04/16/2024 **Client** SunFlora Inc. 600 8th Ave W, STE 400 Palmetto, FL 34221 USA

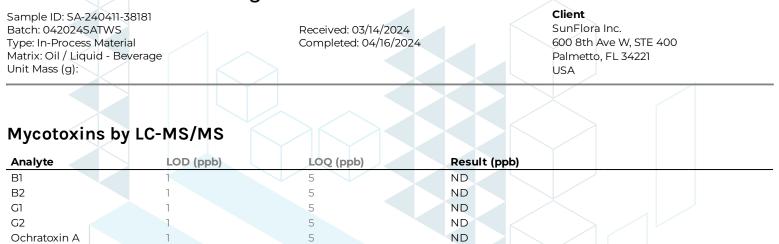
Pesticides by LC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Abamectin	30	100	ND	Hexythiazox	30	100	ND
Acephate	30	100	ND	Imazalil	30	100	ND
Acequinocyl	30	100	ND	Imidacloprid	30	100	ND
Acetamiprid	30	100	ND	Kresoxim methyl	30	100	ND
Aldicarb	30	100	ND	Malathion	30	100	ND
Azoxystrobin	30	100	ND	Metalaxyl	30	100	ND
Bifenazate	30	100	ND	Methiocarb	30	100	ND
Bifenthrin	30	100	ND	Methomyl	30	100	ND
Boscalid	30	100	ND	Mevinphos	30	100	ND
Carbaryl	30	100	ND	Myclobutanil	30	100	ND
Carbofuran	30	100	ND	Naled	30	100	ND
Chloranthraniliprole	30	100	ND	Oxamyl	30	100	ND
Chlorfenapyr	30	100	ND	Paclobutrazol	30	100	ND
Chlorpyrifos	30	100	ND	Permethrin	30	100	ND
Clofentezine	30	100	ND	Phosmet	30	100	ND
Coumaphos	30	100	ND	Piperonyl Butoxide	30	100	ND
Cypermethrin	30	100	ND	Prallethrin	30	100	ND
Daminozide	30	100	ND	Propiconazole	30	100	ND
Diazinon	30	100	ND	Propoxur	30	100	ND
Dichlorvos	30	100	ND	Pyrethrins	30	100	ND
Dimethoate	30	100	ND	Pyridaben	30	100	ND
Dimethomorph	30	100	ND	Spinetoram	30	100	ND
Ethoprophos	30	100	ND	Spinosad	30	100	ND
Etofenprox	30	100	ND	Spiromesifen	30	100	ND
Etoxazole	30	100	ND	Spirotetramat	30	100	ND
Fenhexamid	30	100	ND	Spiroxamine	30	100	ND
Fenoxycarb	30	100	ND	Tebuconazole	30	100	ND
Fenpyroximate	30	100	ND	Thiacloprid	30	100	ND
Fipronil	30	100	ND	Thiamethoxam	30	100	ND
Flonicamid	30	100	ND	Trifloxystrobin	30	100	ND
Fludioxonil	30	100	ND				1

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/16/2024

Tested By: Anthony Mattingly Scientist



Date: 04/16/2024 Date:

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Water Enhancer Sativa Orange

kca

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/16/2024

Tested By: Anthony Mattingly Scientist

Date: 04/16/2024 Date:

1

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Not Detected per 1 gram

6 of 7

Water Enhancer Sativa Orange

Sample ID: SA-240411-38181 Batch: 042024SATWS Type: In-Process Material Matrix: Oil / Liquid - Beverage Unit Mass (g):	Received: 03/14/202 Completed: 04/16/2	
Microbials by PCR and		
Microbials by PCR and		llt (CFU/g) Result (Qualitative)
		llt (CFU/g) Result (Qualitative)
Analyte	LOD (CFU/g) Resul	llt (CFU/g) Result (Qualitative)
Analyte Total aerobic count	LOD (CFU/g) Resul	Ilt (CFU/g) Result (Qualitative)

Shiga-toxin producing E. coli (STEC)

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 04/16/2024

Tested By: Mario Aguirre

Lab Technician Date: 04/16/2024

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

7 of 7

Water Enhancer Sativa Orange

Sample ID: SA-240411-38181 Batch: 042024SATWS Type: In-Process Material Matrix: Oil / Liquid - Beverage Unit Mass (g):

Received: 03/14/2024 Completed: 04/16/2024 **Client** SunFlora Inc. 600 8th Ave W, STE 400 Palmetto, FL 34221 USA

Residual Solvents by HS-GC-MS

	5						
Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)
Acetone	167	500	ND	Ethylene Oxide	0.5	1	ND
Acetonitrile	14	41	ND	Heptane	167	500	2780
Benzene	0.5	1	ND	n-Hexane	10	29	ND
Butane	167	500	ND	Isobutane	167	500	ND
1-Butanol	167	500	ND	Isopropyl Acetate	167	500	ND
2-Butanol	167	500	ND	Isopropyl Alcohol	167	500	ND
2-Butanone	167	500	ND	Isopropylbenzene	167	500	ND
Chloroform	2	6	ND	Methanol	100	300	ND
Cyclohexane	129	388	ND	2-Methylbutane	10	29	ND
1,2-Dichloroethane	0.5	1	ND	Methylene Chloride	20	60	ND
1,2-Dimethoxyethane	4	10	ND	2-Methylpentane	10	29	ND
Dimethyl Sulfoxide	167	500	ND	3-Methylpentane	10	29	ND
N,N-Dimethylacetamide	37	109	ND	n-Pentane	167	500	ND
2,2-Dimethylbutane	10	29	ND	1-Pentanol	167	500	ND
2,3-Dimethylbutane	10	29	ND	n-Propane	167	500	ND
N,N-Dimethylformamide	30	88	ND	1-Propanol	167	500	ND
2,2-Dimethylpropane	167	500	ND	Pyridine	7	20	ND
1,4-Dioxane	13	38	ND	Tetrahydrofuran	24	72	ND
Ethanol	167	500	>70000	Toluene	30	89	ND
2-Ethoxyethanol	6	16	ND	Trichloroethylene	3	8	ND
Ethyl Acetate	167	500	ND	Xylenes (o-, m-, and p-)	73	217	ND
Ethyl Ether	167	500	ND				
Ethylbenzene	3	7	ND				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 04/16/2024

Tested By: Kelsey Rogers Scientist

Date: 04/16/2024 Date: 04/12/2024
This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.